4.4 Article

A Single-Electrode, Dual-Potential Ferrocene-PNA Biosensor for the Detection of DNA

Journal

CHEMBIOCHEM
Volume 11, Issue 12, Pages 1754-1761

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cbic.200900748

Keywords

biosensors; DNA detection; electroactive monolayers; ferrocene; peptide nucleic acids

Funding

  1. European Commission [MEST-CT-2005-020681]
  2. Ruhr-Universitat Research School
  3. Research Department Interfacial Systems Chemistry (RD-IFSC) at the Ruhr-Universitat

Ask authors/readers for more resources

A Fc-PNA biosensor (Fc ferrocenyl, C10H9Fe) was designed by using two electrochemically distinguishable recognition elements with different molecular information at a single electrode Two Fc-PNA capture probes were therefore synthesized by N-terminal labeling different dodecamer PNA sequences with different ferrocene derivatives by click chemistry. Each of the two strands Was thereby tethered with one specific ferrocene derivative. The two capture probes revealed quasi-reversible redox processes of the Fc(0/+) redox couple with a significant difference in their electrochemical half-wave potentials of Delta E-1/2 = 160 mV. A carefully designed biosensor interface, consisting of a ternary self-assembled monolayer (SAM) of the two C-terminal cysteine-tethered Fc-PNA capture probes and 6-mercaptohexanol, was electrochemically investigated by square wave (SWV) and cyclic voltammetry (CV). The biosensor properties of this interface were analyzed by studying the interaction with DNA sequences that were complementary to either of the two capture probes by SWV. Based on distinct changes in both peak current and potential, a parallel identification of these two DNA sequences was successful with one interface design Moreover, the primary electrochemical response could be converted by a simple mathematical analysis into a clear-cut electrochemical signal about the hybridization event. The discrimination of single-nucleotide polymorphism (SNP) was proven with a chosen single-mismatch DNA sequence. Furthermore, experiments with crude bacterial RNA confirm the principal suitability of this dual-potential sensor under real-life conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available