4.4 Article

DNA and RNA-Controlled Switching of Protein Kinase Activity

Journal

CHEMBIOCHEM
Volume 10, Issue 4, Pages 758-765

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cbic.200800771

Keywords

constrained peptides; hybridization; nucleic acids; protein-protein interactions; signal transduction

Funding

  1. Volkswagen-Foundation

Ask authors/readers for more resources

Protein switches use the binding energy gained upon recognition of ligands to modulate the conformation and binding properties of protein segments. We explored whether the programmable nucleic acid mediated recognition might be used to design or mimic constraints that limit the conformational freedom of peptide segments. The aim was to design nucleic acid-peptide conjugates in which the peptide portion of the conjugate would change the affinity for a protein target upon hybridization. This approach was used to control the affinity of a PNA-phosphopeptide conjugate for the signal transduction protein Src kinase, which binds the cognate phosphopeptides in a linear conformation. Peptide-nucleic acid arms were attached to known peptide binders. The chimeric molecules were studied in three modes: 1) as single strands, 2) constrained by intermolecular hybridization (duplex formation) and 3) constrained by intramolecular hybridization (hairpin formation). Of note, duplexes that were designed to accommodate bulged peptide structures (for example, in hairpins or bulges) had lower binding affinities than duplexes in which the peptide was allowed to adopt a more relaxed conformation. Greater than 90-fold differences in binding affinities were observed. It was, thus, feasible to make use of DNA hybridization to reversibly switch from no to almost complete inhibition of Src-SH2-peptide binding, and vice versa. A series of DNA and PNA-based hybridization experiments revealed the importance of charges and conformational effects. Nucleic acid mediated switching was extended to the use of RNA; this enabled a regulation of the enzymatic activity of the Src kinase. The proof-of-principle results demonstrate for the first time that PNA-peptide chimeras can transduce changes of the concentration of a given RNA molecule to changes of the activity of a signal transduction enzyme.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available