4.6 Article

Luminescence of nanocrystalline ZnS : Pb2+

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 3, Issue 11, Pages 2105-2112

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b100968k

Keywords

-

Ask authors/readers for more resources

Nanocrystalline ZnS:Pb2+ is synthesised via a precipitation method. The influence of the size of the nanocrystals and the sulfide concentration used in the synthesis on the luminescence properties is investigated. Nanocrystalline ZnS:Pb2+ shows a white emission under UV excitation with a rather high quantum efficiency (similar to5%). At least two luminescence centres are involved. One centre is identified as a Pb2+ ion located on a regular Zn2+ site and gives a red emission under 480 nm excitation. The luminescence properties of this emission are characteristic of P-3(0)--> S-1(0) (A-band) or charge transfer (D-band) transitions on Pb2+ ions. The other centres are not as well defined and give a broad green emission band under 380 nm excitation and also show luminescence properties typically observed for Pb2+. The green emission probably originates from a charge-transfer like D-band emission of Pb2+ in ZnS close to a defect (e.g. an S2- vacancy or an O2- ion on an S2- site). A relation between the temperature quenching of the emissions and the band gap is observed and indicates that photoionisation occurs. The higher quenching temperature for the Pb2+ luminescence in smaller particles can be explained by widening of the band gap as a result of quantum size effects in the ZnS host.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available