4.5 Article Proceedings Paper

Degradation of cyanobacterial hepatotoxins in batch experiments

Journal

WATER SCIENCE AND TECHNOLOGY
Volume 43, Issue 12, Pages 229-232

Publisher

I W A PUBLISHING
DOI: 10.2166/wst.2001.0745

Keywords

nodularin; microcystin; bank filtration; degradation; soils; toxin removal

Ask authors/readers for more resources

Bank filtration offers a cost effective and low maintenance technique for the removal of cyanobacterial hepatotoxins from drinking water. For bank filtration to be effective, the toxins must be degraded. The broad aim of this research was to determine whether the hepatotoxins, nodularin and microcystin-LR, could be completely removed from the soil/water matrix of three soils by microbial degradation. The results indicated that complete toxin removal was possible within 10-16 d in 2/3 soils that were incubated in the dark at 20 degreesC. The soils with the highest organic carbon content (2.9%) and the highest clay content (16.1 %) were the most effective at removing the toxins in batch experiments. However, the sandy soil (98.5% sand) was incapable of degrading either toxin. The half-lives of toxin losses due to adsorption, desorption and degradation were calculated and for all soils. The degradation process had the highest half-life for both toxins. This suggested that degradation was likely to be the rate-limiting step of complete toxin removal. It was concluded that when a bank filtration site was being chosen, the degradation potential and the textural properties of the riverbank soil would be important when considering complete removal of cyanobacterial hepatotoxins.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available