4.5 Article

Persistent sodium channel activity mediates subthreshold membrane potential oscillations and low-threshold spikes in rat entorhinal cortex layer V neurons

Journal

NEUROSCIENCE
Volume 102, Issue 1, Pages 53-64

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0306-4522(00)00455-3

Keywords

oscillations; sodium current; parahippocampal; rhythms; low-threshold spike; epilepsy

Categories

Ask authors/readers for more resources

Entorhinal cortex layer V occupies a critical position in temporal robe circuitry since, on the one hand, it serves as the main conduit for the flow of information out of the hippocampal formation back to the neocortex and, on the other, it closes a hippocampal-entorhinal loop by projecting upon the superficial cell layers that give rise to the perforant path. Recent in vitro electrophysiological studies have shown that rat entorhinal cortex layer V cells are endowed with the ability to generate subthreshold oscillations and all-or-none, low-threshold depolarizing potentials. In the present study, by applying current-clamp, voltage-clamp and single-channel recording techniques in rat slices and dissociated neurons, we investigated whether entorhinal cortex layer V cells express a persistent sodium current and sustained sodium channel activity to evaluate the contribution of this activity to the subthreshold behavior of the cells. Sharp-electrode recording in slices demonstrated that layer V cells display tetrodotoxin-sensitive inward rectification in the depolarizing direction, suggesting that a persistent sodium current is present in the cells. Subthreshold oscillations and low-threshold regenerative events were also abolished by tetrodotoxin, suggesting that their generation also requires the activation of such a low-threshold sodium current. The presence of a persistent sodium current was confirmed in whole-cell voltage-clamp experiments, which revealed that its activation threshold was negative by about 10 mV to that of the transient sodium current. Furthermore, stationary noise analysis and cell-attached, patch-clamp recordings indicated that whole-cell persistent sodium currents were mediated by persistent sodium channel activity, consisting of relatively high-conductance (similar to 18 pS) sustained openings. The presence of a persistent sodium current in entorhinal cortex layer V cells can cause the generation of oscillatory behavior, bursting activity and sustained discharge; this might be implicated in the encoding of memories in which the entorhinal cortex participates but, under pathological situations, may also contribute to epileptogenesis and neurodegeneration. (C) 2001 IBRO. Published by Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available