4.3 Article

Porphyrins entrapped in an alumina matrix

Journal

JOURNAL OF MATERIALS CHEMISTRY
Volume 11, Issue 10, Pages 2476-2481

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b100897h

Keywords

-

Ask authors/readers for more resources

Novel hybrid organic-inorganic catalysts constituted by iron( III) or manganese( III) 5,10,15,20-tetrakis(pentafluorophenyl) porphyrin entrapped in an alumina amorphous matrix have been prepared. The hybrid materials were obtained by a non-hydrolytic sol-gel route, through the condensation of aluminium chloride with diisopropyl ether in the presence of metalloporphyrin. The presence of the metalloporphyrin entrapped in the alumina matrix is confirmed by ultraviolet-visible spectroscopy and electron spectroscopic imaging. The material was also analysed by infrared spectroscopy, selected area diffraction, scanning electron microscopy, thermogravimetric analysis and differential thermal analysis, and its surface area was determined. Comparison between the leaching of metalloporphyrin from non-hydrolytic materials and adsorbed metalloporphyrin on commercial neutral alumina confirms that in the non-hydrolytic materials the metalloporphyrin is entrapped and not just adsorbed on the alumina surface. The use of a conventional hydrolytic sol-gel process leads to the complete leaching of the metalloporphyrin from the matrix, underlining the importance of the non-hydrolytic alumina gel process in the matrix preparation. The prepared alumina matrix materials are amorphous, even after heat treatment up 270 degreesC. The new catalysts prepared were tested for their ability to catalyse the epoxidation of (Z)-cyclooctene using iodosylbenzene as oxygen donor, giving high yields in the epoxidation, similar to those obtained using the metalloporphyrin in solution or supported on a silica matrix.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available