4.3 Article

Fluorescence-quenching phenomenon by photoinduced electron transfer between a fluorescent dye and a nucleotide base

Journal

ANALYTICAL SCIENCES
Volume 17, Issue 1, Pages 155-160

Publisher

JAPAN SOC ANALYTICAL CHEMISTRY
DOI: 10.2116/analsci.17.155

Keywords

-

Ask authors/readers for more resources

Fluorescently labeled oligonucleotide probes have been widely used in biotechnology, and fluorescence quenching by the interaction between the dyes and a nucleobase has been pointed out. This quenching causes big problem in analytical methods, but is useful in some other cases. Therefore, it is necessary to estimate the fluorescence quenching intensity under various conditions. We focused on the redox properties of some commercially available fluorescent dyes, and investigated dye-nucleotide interactions between a free dye and a nucleotide in aqueous solution by electrochemical and spectroscopic techniques. Our results suggested that the quenching was accompanied by photoinduced electron transfer between a thermodynamically quenchable excited dye and a specific base. Several kinds of fluorescent dyes labeled to the 5'-end of oligonucleotide C10T6 Were prepared, and their quenching ratios compared upon hybridization with the complementary oligonucleotide A(6)G(10) The quenching was completely reversible and their efficiencies depended on the attached fluorophore types. The fluorescence of 5-FAM, BODIPY FL or TAMRA-modified probe was strongly quenched by hybridization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available