4.7 Article

SPH elastic dynamics

Journal

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
Volume 190, Issue 49-50, Pages 6641-6662

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/S0045-7825(01)00254-7

Keywords

-

Ask authors/readers for more resources

The standard smoothed particle hydrodynamics (SPH) formulation of fluid dynamics can exhibit an instability called the tensile instability. This instability may occur with both positive and negative pressure. Usually the effects are small, but in the case of elastic or brittle solids the effects may be severe. Under tension, a brittle solid can fracture, but it is difficult to disentangle the physical fracture and fragmentation from the nonphysical clumping of SPH particles due to the tensile instability. Recently, one of us (JJM) has shown how this instability can be removed by an artificial stress which introduces negligible errors in long-wavelength modes. In this paper we show how the algorithm can be improved by basing the artificial stress on the signs of the principal stresses. We determine the parameters of the artificial stress from the dispersion relation for elastic waves in a uniform material. We apply the algorithm to oscillating beams, colliding rings and brittle solids. The results are in very good agreement with theory, and with other high-accuracy methods. (C) 2001 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available