4.8 Article

Immobilization of heparin to EDC/NHS-crosslinked collagen. Characterization and in vitro evaluation

Journal

BIOMATERIALS
Volume 22, Issue 2, Pages 151-163

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/S0142-9612(00)00164-2

Keywords

vascular grafts; collagen coating; heparin immobilization; contact activation; thrombin inactivation; platelet interaction

Ask authors/readers for more resources

In the present study, heparin immobilization to a non-cytotoxic crosslinked collagen substrate for endothelial cell seeding was investigated. Crosslinking of collagen using N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS) resulted in a material containing 14 free primary amino groups per 1000 amino acid residues (E/N14C). At a fixed molar ratio NHS:EDC of 0.6, the amount of heparin covalently immobilized to E/N14C increased with increasing molar ratios of EDC to heparin carboxylic acid groups (Hep-COOH), to a maximum of approximately 5-5.5 wt% at a ratio of 2. Upon incubation in cell culture medium of endothelial cells, 4 to 7% of the immobilized heparin was released during 11 days. Immobilization of increasing amounts of heparin to E/N14C progressively reduced activation of contact activation proteases. Optimal anticoagulant activity, as measured by thrombin inhibition, was obtained after heparin immobilization using a ratio of EDC to Hep-COOH of 0.2-0.4 (14-20 mg heparin immobilized per gram of collagen). Platelets deposited to (heparinized) E/N14C showed only minor spreading and aggregation, although heparin immobilization slightly increased the number of adherent platelets. The results of this study suggest that heparin immobilization to EDC/NHS-crosslinked collagen may improve the in vivo blood compatibility of this material. (C) 2000 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available