4.7 Article

Multistability, local pattern formation, and global collective firing in a small-world network of nonleaky integrate-and-fire neurons

Journal

CHAOS
Volume 19, Issue 1, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.3087432

Keywords

neural nets; nonlinear dynamical systems; pattern formation; spatiotemporal phenomena

Funding

  1. Deutsche Forschungsgemeinschaft [LE 660/4-1]

Ask authors/readers for more resources

We investigate numerically the collective dynamical behavior of pulse-coupled nonleaky integrate-and-fire neurons that are arranged on a two-dimensional small-world network. To ensure ongoing activity, we impose a probability for spontaneous firing for each neuron. We study network dynamics evolving from different sets of initial conditions in dependence on coupling strength and rewiring probability. Besides a homogeneous equilibrium state for low coupling strength, we observe different local patterns including cyclic waves, spiral waves, and turbulentlike patterns, which-depending on network parameters-interfere with the global collective firing of the neurons. We attribute the various network dynamics to distinct regimes in the parameter space. For the same network parameters different network dynamics can be observed depending on the set of initial conditions only. Such a multistable behavior and the interplay between local pattern formation and global collective firing may be attributable to the spatiotemporal dynamics of biological networks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available