4.4 Review

Old proteins, developing roles - The regulation of calcium channels by synaptic proteins

Journal

CHANNELS
Volume 2, Issue 2, Pages 130-138

Publisher

TAYLOR & FRANCIS INC
DOI: 10.4161/chan.2.2.6214

Keywords

calcium channel; syntaxin; SNARE; neurotransmission; synapse; alternative splicing

Funding

  1. Alberta Heritage Foundation for Medical Research (AHFMR)
  2. Canadian Institutes of Health Research

Ask authors/readers for more resources

Coupling of presynaptic voltage-gated calcium channels to the synaptic release machinery is critical for neurotransmission. It was traditionally believed that anchoring calcium channels close to the calcium microdomain dependent release machinery was the main reason for the physical interactions between channels and synaptic proteins, however in recent years, it is becoming clear that these proteins additionally regulate channel activity, and such processes as channel targeting and alternative splicing, to orchestrate a much broader regulatory role in controlling calcium channel function, calcium influx and hence neurotransmission. Calcium signalling serves a multitude of cellular functions and therefore requires tight regulation. Specific, often calcium-dependent interactions between synaptic proteins and calcium channels appear to play a significant role in fine-tuning of the synaptic response over development. While it is clear that investigation of a few of the multitude of synaptic proteins will not provide a complete understanding of calcium channel regulation, consideration of the emerging mechanisms by which synaptic protein interactions might regulate calcium channel function is important in order to understand their possible contributions to synaptic transmission. Here, we review the current state of knowledge of the molecular mechanisms by which synaptic proteins regulate presynaptic calcium channel activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available