4.7 Article

Sorption of naphthalene and phenanthrene by soil humic acids

Journal

ENVIRONMENTAL POLLUTION
Volume 111, Issue 2, Pages 303-309

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/S0269-7491(00)00065-8

Keywords

humic acids; sorption; nonlinear; organic compounds; dual-mode

Ask authors/readers for more resources

Humic acids are a major fraction of soil organic matter (SOM), and sorption of hydrophobic organic chemicals by humic acids influences their behavior and fate in soil. A clear understanding of the sorption of organic chemicals by humic acids will help to determine their sorptive mechanisms in SOM and soil. In this paper, we determined the sorption of two hydrophobic organic compounds, naphthalene and phenanthrene by six pedogenetically related humic acids. These humic acids were extracted from different depths of a single soil profile and characterized by solid-state CP/MAS C-13 nuclear magnetic resonance (NMR). Aromaticity of the humic acids increased with soil depth. Similarly, atomic ratios of C/H and C/O also increased with depth (from organic to mineral horizons). All isotherms were nonlinear. Freundlich exponents (N) ranged from 0.87 to 0.95 for naphthalene and from 0.86 to 0.92 for phenanthrene. The N values of phenanthrene were consistently lower than naphthalene for a given humic acid. For both compounds, N values decreased with increasing aromaticity of the humic acids, such an inverse relationship was never reported before. These results support the dual-mode sorption model where partitioning occurs in both expanded (flexible) and condensed (rigid) domains while nonlinear sorption only in condensed domains of SOM. Sorption in the condensed domains may be a cause for slow desorption, and reduced availability and toxicity with aging. (C) 2000 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available