4.5 Article

Stochastic processes with sample paths in reproducing kernel Hilbert spaces

Journal

TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY
Volume 353, Issue 10, Pages 3945-3969

Publisher

AMER MATHEMATICAL SOC
DOI: 10.1090/S0002-9947-01-02852-5

Keywords

covariance operator; Gaussian process; nuclear dominance; random element in Hilbert space; reproducing kernel Hilbert space; second order process; zero-one law

Categories

Ask authors/readers for more resources

A theorem of M. F. Driscoll says that, under certain restrictions, the probability that a given Gaussian process has its sample paths almost surely in a given reproducing kernel Hilbert space (RKHS) is either 0 or 1. Driscoll also found a necessary and sufficient condition for that probability to be 1. Doing away with Driscoll's restrictions, R. Fortet generalized his condition and named it nuclear dominance. He stated a theorem claiming nuclear dominance to be necessary and sufficient for the existence of a process (not necessarily Gaussian) having its sample paths in a given RKHS. This theorem-specifically the necessity of the condition-turns out to be incorrect, as we will show via counterexamples. On the other hand, a weaker sufficient condition is available. Using Fortet's tools along with some new ones, we correct Fortet's theorem and then find the generalization of Driscoll's result. The key idea is that of a random element in a RKHS whose values are sample paths of a stochastic process. As in Fortet's work, we make almost no assumptions about the reproducing kernels we use, and we demonstrate the extent to which one may dispense with the Gaussian assumption.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available