4.6 Article

Laminar and Columnar Structure of Sensory-Evoked Multineuronal Spike Sequences in Adult Rat Barrel Cortex In Vivo

Journal

CEREBRAL CORTEX
Volume 25, Issue 8, Pages 2001-2021

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/cercor/bhu007

Keywords

barrel cortex; feedforward inhibition; multielectrode; neural assembly; spike sequences

Categories

Funding

  1. Deutsche Forschungsgemeinschaft (German Research Foundation)

Ask authors/readers for more resources

One of the most relevant questions regarding the function of the nervous system is how sensory information is represented in populations of cortical neurons. Despite its importance, the manner in which sensory-evoked activity propagates across neocortical layers and columns has yet not been fully characterized. In this study, we took advantage of the distinct organization of the rodent barrel cortex and recorded with multielectrode arrays simultaneously from up to 74 neurons localized in several functionally identified layers and columns of anesthetized adult Wistar rats in vivo. The flow of activity within neuronal populations was characterized by temporally precise spike sequences, which were repeatedly evoked by single-whisker stimulation. The majority of the spike sequences representing instantaneous responses were led by a subgroup of putative inhibitory neurons in the principal column at thalamo-recipient layers, thus revealing the presence of feedforward inhibition. However, later spike sequences were mainly led by infragranular excitatory neurons in neighboring columns. Although the starting point of the sequences was anatomically confined, their ending point was rather scattered, suggesting that the population responses are structurally dispersed. Our data show for the first time the simultaneous intra- and intercolumnar processing of information at high temporal resolution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available