4.6 Article

Low- but Not High-Frequency LFP Correlates with Spontaneous BOLD Fluctuations in Rat Whisker Barrel Cortex

Journal

CEREBRAL CORTEX
Volume 26, Issue 2, Pages 683-694

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/cercor/bhu248

Keywords

barrel cortex; gamma oscillation; delta oscillation; spontaneous fluctuation; functional connectivity

Categories

Funding

  1. Intramural Research Program, National Institute on Drug Abuse, National Institute of Health

Ask authors/readers for more resources

Resting-state magnetic resonance imaging (rsMRI) is thought to reflect ongoing spontaneous brain activity. However, the precise neurophysiological basis of rsMRI signal remains elusive. Converging evidence supports the notion that local field potential (LFP) signal in the high-frequency range correlates with fMRI response evoked by a task (e.g., visual stimulation). It remains uncertain whether this relationship extends to rsMRI. In this study, we systematically modulated LFP signal in the whisker barrel cortex (WBC) by unilateral deflection of rat whiskers. Results show that functional connectivity between bilateral WBC was significantly modulated at the 2 Hz, but not at the 4 or 6 Hz, stimulus condition. Electrophysiologically, only in the low-frequency range (< 5 Hz) was the LFP power synchrony in bilateral WBC significantly modulated at 2 Hz, but not at 4- or 6-Hz whisker stimulation, thus distinguishing these 2 experimental conditions, and paralleling the findings in rsMRI. LFP power synchrony in other frequency ranges was modulated in a way that was neither unique to the specific stimulus conditions nor parallel to the fMRI results. Our results support the hypothesis that emphasizes the role of low-frequency LFP signal underlying rsMRI.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available