4.3 Article

Laminar burning velocity of methane-air-diluent mixtures

Publisher

ASME-AMER SOC MECHANICAL ENG
DOI: 10.1115/1.1339984

Keywords

-

Ask authors/readers for more resources

An experimental facility for measuring burning velocity has been designed and built. It consists of a spherical constant volume vessel equipped with a dynamic pressure transducer, ionization probes, thermocouple, and data acquisition system. The constant volume combustion vessel allows for the determination of the burning velocity over a wide range of temperatures and pressures from a single run. A new model has been developed to calculate the laminar burning velocity using the pressure data of the combustion process. The model solves conservation of mass and energy equations to determine the mass fraction of the burned gas as the combustion process proceeds. This new method allows for temperature gradients in the burned gas and the effects of flame stretch on burning velocity. Exact calculations of the burned gas properties are determined by using a chemical equilibrium code with gas properties from the JANAF Tables. Numerical differ entiation of the mass fraction burned determines the rate of the mass fraction burned from which the laminar burning velocity is calculated. Using this method, the laminar burning velocities of methane-air-diluent mixtures have been measured. A correlation has been developed for the range of pressures from 0.75 to 70 atm, unburned gas temperatures from 298 to 550 K, fuel/air equivalence ratios from 0.8 to 1.2, and diluent addition from 0 to 15 percent by volume.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available