4.3 Article Proceedings Paper

An EMG technique for measuring spinal loading during asymmetric lifting

Journal

CLINICAL BIOMECHANICS
Volume 16, Issue -, Pages S17-S24

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/S0268-0033(00)00097-8

Keywords

lumbar spine; compressive loading; electromyography; linked-segment model; asymmetric lifting

Ask authors/readers for more resources

Objective. To compare two methods of calibrating the erector spinae electromyographic signal against moment generation in order to predict extensor moments during asymmetric lifting tasks, and to compare the predicted moments with those obtained using a linked-segment model. Methods. Eight men lifted loads of 6.7 and 15.7 kg at two speeds, in varying amounts of trunk rotation. For each lift, the following were recorded at 60 Hz; the rectified and averaged surface electromyographic signal. bilaterally at T10 and L3, lumbar curvature using the 3-Space Isotrak. movement of body segments using a 4-camera Vicon system, and ground reaction forces using a Kistler force-plate. Electromyographic (EMG) and Isotrak data were used to calculate lumbosacral extensor moments using the electromyographic model, whereas movement analysis data and ground reaction forces were used to estimate net moments using the linked-segment model. For the electromyographic technique, predictions of extensor moment were based on two different sets of EMG-extensor moment calibrations: one performed in pure sagittal flexion and the other in flexion combined with 45 degrees of trunk rotation. Results. Extensor moments predicted by the electromyographic technique increased significantly with load and speed of lifting but were not influenced by the method of calibration. These moments were 7-40% greater than the net moments obtained with the linked-segment model, the difference increasing with load and speed. Conclusions. The calibration method does not influence extensor moments predicted by the electromyographic technique in asymmetric lifting, suggesting that simple, sagittal-plane calibrations are adequate for this purpose. Differences in predicted moments between the electromyographic technique and linked-segment model may be partly due to different anthropometric assumptions and different amounts of smoothing and filtering in the two models, and partly due to antagonistic muscle forces, the effects of which cannot be measured by linked-segment models.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available