4.6 Article

A Representation of Changing Heading Direction in Human Cortical Areas pVIP and CSv

Journal

CEREBRAL CORTEX
Volume 24, Issue 11, Pages 2848-2858

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/cercor/bht132

Keywords

egomotion; fMRI; optic flow; self-motion

Categories

Funding

  1. European Community [214728-2]

Ask authors/readers for more resources

When we move around in the environment, we continually change direction. Much work has examined how the brain extracts instantaneous direction of heading from optic flow but how changes in heading are encoded is unknown. Change could simply be inferred cognitively from successive instantaneous heading values, but we hypothesize that heading change is represented as a low-level signal that feeds into motor control with minimal need for attention or cognition. To test this, we first used functional MRI to measure activity in several predefined visual areas previously associated with processing optic flow (hMST, hV6, pVIP, and CSv) while participants viewed flow that simulated either constant heading or changing heading. We then trained a support vector machine (SVM) to distinguish the multivoxel activity pattern elicited by rightward versus leftward changes in heading direction. Some motion-sensitive visual cortical areas, including hMST, responded well to flow but did not appear to encode heading change. However, visual areas pVIP and, particularly, CSv responded with strong selectivity to changing flow and also allowed direction of heading change to be decoded. This suggests that these areas may construct a representation of heading change from instantaneous heading directions, permitting rapid and accurate preattentive detection and response to change.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available