4.6 Article

Cerebellar Processing of Sensory Inputs Primes Motor Cortex Plasticity

Journal

CEREBRAL CORTEX
Volume 23, Issue 2, Pages 305-314

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/cercor/bhs016

Keywords

cerebellum; human; modulation; motor cortex; plasticity; repetitive transcranial magnetic stimulation; thalamus

Categories

Funding

  1. Institute National de la Santeet de la Recherche Medicale (INSERM)-Indian Council of Medical Research (ICMR)
  2. INSERM [C10-01]
  3. patient association Alliance France Dystonie
  4. Dystonia Coalition
  5. NIH Office of Rare Diseases Research [NS065701]
  6. National Institute of Neurological Disorders and Stroke
  7. Universite Pierre et Marie Curie (UPMC)
  8. Fondation Motrice
  9. Fondation Groupama pour la Sante
  10. [5040]

Ask authors/readers for more resources

Plasticity of the human primary motor cortex (M1) has a critical role in motor control and learning. The cerebellum facilitates these functions using sensory feedback. We investigated whether cerebellar processing of sensory afferent information influences the plasticity of the primary motor cortex (M1). Theta-burst stimulation protocols (TBS), both excitatory and inhibitory, were used to modulate the excitability of the posterior cerebellar cortex and to condition an ongoing M1 plasticity. M1 plasticity was subsequently induced in 2 different ways: by paired associative stimulation (PAS) involving sensory processing and TBS that exclusively involves intracortical circuits of M1. Cerebellar excitation attenuated the PAS-induced M1 plasticity, whereas cerebellar inhibition enhanced and prolonged it. Furthermore, cerebellar inhibition abolished the topography-specific response of PAS-induced M1 plasticity, with the effects spreading to adjacent motor maps. Conversely, cerebellar excitation had no effect on the TBS-induced M1 plasticity. This demonstrates the key role of the cerebellum in priming M1 plasticity, and we propose that it is likely to occur at the thalamic or olivo-dentate nuclear level by influencing the sensory processing. We suggest that such a cerebellar priming of M1 plasticity could shape the impending motor command by favoring or inhibiting the recruitment of several muscle representations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available