4.3 Article

Release of nitric oxide together with carbon-centered radicals from N-nitrosamines by ultraviolet light irradiation

Journal

FREE RADICAL RESEARCH
Volume 35, Issue 6, Pages 803-813

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/10715760100301301

Keywords

carbon-centered radical; nitric oxide; N-nitrosamine; nitrite; ultraviolet irradiation

Ask authors/readers for more resources

Solutions of N-nitrosamines, N-nitrosodimethylamine, N-nitrosodiethylamine, N-nitrosomorpholine and N-nitrosopyrrolidine in phosphate buffer (pH 7.4) were irradiated by ultraviolet (UV) light at room temperature. The N-nitrosamines were extensively degraded due to irradiation for 120min in a time-dependent fashion as monitored by UV-absorption or high performance liquid chromatographic analysis. Carbon-centered radicals were generated from four N-nitrosamines during the short time irradiation of 10-60 s as monitored by electron spin resonance (ESR) technique using 5,5-dimethyl-1-pyrroline N-oxide and N-tert-butyl-alpha-phenylnitrone as spin traps. Nitric oxide (NO) was generated during the short time irradiation as monitored by ESR technique using cysteine-Fe(II) complex, N-methyl-D-glucamine dithdocarbamate and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. Significant amounts of nitrite (4-16%) from four N-nitrosamines and also a significant amount of nitrate (4%) was produced from N-nitrosodimethylamine during the irradiation time of 120 min. Released NO from the N-nitrosamines must be converted into nitrite through intermediary reactive nitrogen oxide species including nitrogen dioxide and dinitrogen trioxide in contact with dissolved oxygen.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available