4.6 Article

Theta Oscillations Mediate Interaction between Prefrontal Cortex and Medial Temporal Lobe in Human Memory

Journal

CEREBRAL CORTEX
Volume 20, Issue 7, Pages 1604-1612

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/cercor/bhp223

Keywords

coherence; electrocorticogram; Granger causality; intracranial EEG; verbal recall

Categories

Ask authors/readers for more resources

The medial temporal lobe (MTL) and the prefrontal cortex (PFC) are known to be critical structures for human memory processes. Furthermore, it has been suggested that they are part of a memory network. Although memory-modulated interaction between PFC and MTL has been observed at the hemodynamic level, it remains unclear what the neuronal process is that mediates the communication between these 2 areas. Experiments in rodents suggest that field oscillations in the theta band (4-8 Hz) facilitate PFC-MTL interaction. No such evidence has been reported in humans. To address this problem, cortical electrical activity from MTL, PFC, and lateral temporal lobe was recorded from implanted electrode grids in 3 epilepsy patients performing a verbal free recall task. The data were analyzed using a parametric spectral method to obtain estimates of power, coherence, and Granger causality. A task-modulated increase in coherence values between PFC and MTL was seen during free recall as opposed to a baseline condition. Concurrently, the number of coherent PFC-MTL site pairs was significantly increased during recall. Granger causality analysis further revealed that the increased coherence is a consequence of higher bidirectional information flow between the 2 regions, with a generally greater driving from MTL to PFC, namely, (MTL -> PFC) > (PFC -> MTL).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available