4.6 Article

Feature Binding in the Feedback Layers of Area V2

Journal

CEREBRAL CORTEX
Volume 19, Issue 10, Pages 2230-2239

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/cercor/bhn243

Keywords

cerebral cortex; dual selectivity; laminar circuitry; macaque monkey; neurophysiology; vision

Categories

Funding

  1. Wellcome Trust (UK)

Ask authors/readers for more resources

The visual features of an object are processed by multiple, functionally specialized areas of cerebral cortex. When several objects are seen simultaneously, what mechanism preserves the association of features that belong to a single item? We address this question-known as the binding problem-by examining combinatorial feature selectivity of neurons in area V2. In recording from anesthetized macaques, we estimate that dual selectivity for chromatic and spatiotemporal attributes is 50% more common (27% vs. 18% sampling frequency) in superficial and deep layer neurons receiving feedback connections from higher areas, compared with layer 4-3 neurons relaying ascending signals. The operation of feedback pathways is thought to mediate attentional modulation of activity that may achieve binding through acting to select one single object for higher representation and filtering out competing objects. We propose that dual-selective neurons perform a bridging function, mediating the transfer of feedback-induced bias between feature dimensions. The bias can be propagated through V2 output neurons (of unitary selectivity) to higher levels of specialized processing and so promote selection of the target object's representation among multiple feature maps. The bridging function would thus act to unify the outcome of parallel, object-selective processes taking place along segregated visual pathways.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available