4.6 Article

Common neural substrates for inhibition of spoken and manual responses

Journal

CEREBRAL CORTEX
Volume 18, Issue 8, Pages 1923-1932

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/cercor/bhm220

Keywords

fMRI; language; response inhibition; right IFC; stop signal

Categories

Ask authors/readers for more resources

The inhibition of speech acts is a critical aspect of human executive control over thought and action, but its neural underpinnings are poorly understood. Using functional magnetic resonance imaging and the stop-signal paradigm, we examined the neural correlates of speech control in comparison to manual motor control. Initiation of a verbal response activated left inferior frontal cortex (IFC: Broca's area). Successful inhibition of speech (naming of letters or pseudowords) engaged a region of right IFC (including pars opercularis and anterior insular cortex) as well as presupplementary motor area (pre-SMA); these regions were also activated by successful inhibition of a hand response (i.e., a button press). Moreover, the speed with which subjects inhibited their responses, stop-signal reaction time, was significantly correlated between speech and manual inhibition tasks. These findings suggest a functional dissociation of left and right IFC in initiating versus inhibiting vocal responses, and that manual responses and speech acts share a common inhibitory mechanism localized in the right IFC and pre-SMA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available