4.6 Article

A Role of Beta Oscillatory Synchrony in Biasing Response Competition?

Journal

CEREBRAL CORTEX
Volume 19, Issue 6, Pages 1294-1302

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/cercor/bhn174

Keywords

corticospinal coherence; electroencephalography; movement preparation; response selection; sensorimotor function

Categories

Funding

  1. Netherlands Organisation for Scientific Research (NWO) [452-04-344]

Ask authors/readers for more resources

Beta-range oscillatory activity measured over the motor cortex and beta synchrony between cortex and spinal cord can be up- or downregulated in anticipation of a postural challenge or the initiation of movement. Based on these properties of beta activity in the preparation for future events, the present investigation addressed whether simultaneous up- and downregulation of beta activity might act as an online mechanism to suppress and select competing responses. Measures of local and long-range beta synchrony were obtained from electroencephalographic and electromyographic signals recorded during a cued choice reaction task. Analyses focused on task-related changes in beta synchrony during a 2-s delay period between cue and response signal. Analyzed separately, none of the beta measures (spectral power, corticospinal coherence, corticospinal phase synchronization) showed simultaneous up- and downregulation over opposite hemispheres controlling the competing responses. However, the combined pattern of beta measures showed beta power desynchronization associated with selection of a response and increased corticospinal coherence and phase synchronization associated with suppression of a response. These results indicate that concurrent up- and downregulation of different components of beta oscillatory activity is likely to have a functional role in response selection, resembling attentional modulation of alpha activity in visual selection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available