4.6 Article

Spatiotemporal Signatures of Large-Scale Synfire Chains for Speech Processing as Revealed by MEG

Journal

CEREBRAL CORTEX
Volume 19, Issue 1, Pages 79-88

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/cercor/bhn060

Keywords

inflectional affix; language; MEG; noise; spatiotemporal pattern; speech

Categories

Funding

  1. Medical Research Council [U1055.04.003.00001.01, U1055. 04.003.00003.01]
  2. European Community
  3. New and Emerging Science and Technology'' Programmes NESTCOM [IST-2001-35282]
  4. Medical Research Council [MC_U105580445, MC_U105597122] Funding Source: researchfish
  5. MRC [MC_U105580445, MC_U105597122] Funding Source: UKRI

Ask authors/readers for more resources

We report a new brain signature of memory trace activation in the human brain revealed by magnetoencephalography and distributed source localization. Spatiotemporal patterns of cortical activation can be picked up in the time course of source images underlying magnetic brain responses to speech and noise stimuli, especially the generators of the magnetic mismatch negativity. We found that acoustic signals perceived as speech elicited a well-defined spatiotemporal pattern of sequential activation of superior-temporal and inferior-frontal cortex, whereas the same identical stimuli, when perceived as noise, did not elicit temporally structured activation. Strength of local sources constituting large-scale spatiotemporal patterns reflected additional lexical and syntactic features of speech. Morphological processing of the critical sound as verb inflection led to particularly pronounced early left inferior-frontal activation, whereas the same sound functioning as inflectional affix of a noun activated superior-temporal cortex more strongly. We conclude that precisely timed spatiotemporal patterns involving specific cortical areas may represent a brain code of memory circuit activation. These spatiotemporal patterns are best explained in terms of synfire mechanisms linking neuronal populations in different cortical areas. The large-scale synfire chains appear to reflect the processing of stimuli together with the context-dependent perceptual and cognitive information bound to them.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available