4.3 Article

The aging brain. Changes in the neuronal insulin/insulin receptor signal transduction cascade trigger late-onset sporadic Alzheimer disease (SAD). A mini-review

Journal

JOURNAL OF NEURAL TRANSMISSION
Volume 109, Issue 7-8, Pages 991-1002

Publisher

SPRINGER WIEN
DOI: 10.1007/s007020200082

Keywords

aging; brain; insulin; insulin receptor; amyloid precursor protein; tau-protein

Ask authors/readers for more resources

Aging of the brain has been demonstrated to be the main risk factor for late-onset sporadic AD what is in contrast to early-onset familial AD in which mutations predominante the pathology. Aging of the brain was found to be associated with a multitude of aberrancies from normal in morphological, cellular and molecular terms. Recent findings provide clear evidence that the function of the neuronal insulin/insulin receptor signal transduction cascade is of pivotal significane to maintain normal cerebral blood flow and oxidative energy metabolism, work of the endoplasmatic reticulum/Golgi apparatus and the cell cycle in terminally differentiated neurons no longer in the cell cycle. It has become evident that normal metabolism of both amyloid precursor protein and tau-protein is part of interactive processes controlled by the neuronal FIR signal transduction cascade. In normal brain aging, the function of this cascade starts to fail compared to normal resulting in adverse effects in CBF/oxidative energy metabolism, work of the endoplasmatic reticulum/Golgi apparatus and cell cycle. The aberrancies may not be drastic, but multifold and permanently existing, inclusive the metabolism of APP and tau-protein. The amount of intraneuronally formed betaA4 may increase, and tau-protein may become hyperphosphorylated. These processes as a whole may increase the vulnarability of the aging brain and may facilitate the generatin of late-onset sporadic AD.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available