4.3 Article

Proteolytic release of membrane-bound endo-(1,4)-beta-glucanase activity associated with cell wall softening in Achlya ambisexualis

Journal

CANADIAN JOURNAL OF MICROBIOLOGY
Volume 48, Issue 1, Pages 93-98

Publisher

NATL RESEARCH COUNCIL CANADA
DOI: 10.1139/W01-132

Keywords

apical growth; hyphal branching; proteases; cell walls; protein secretion

Ask authors/readers for more resources

Branching and other cell wall softening events in fungi and oomycetes are thought to involve the activity of secreted enzymes, which are packaged in membrane vesicles and delivered to sites of cell expansion, there to work in a carefully regulated manner upon the structure of the wall. Here we demonstrate a latent endo-(1,4)-beta-glucanase activity in a mixed membrane fraction of the oomycete Achlya ambisexualis, which can be released by cysteine proteases with an increase of apparent activity. In addition, a similar endogenous process is strongly inhibited by the cysteine protease inhibitor iodoacetamide, while inhibitors of other types of proteases have a much smaller effect. Detergent treatment of membranes releases two glucanases detectable by electrophoretic activity staining, with apparent molecular masses of about 164 and 35 kDa. Proteolysis produces several activity bands, with major species having apparent molecular masses of about 149, 133, 48, 35, and 25 kDa. The ca. 35- and 25-kDa bands migrate in parallel with glucanases secreted during wall softening in vivo. We propose that the initiation of wall softening in Achlya involves the proteolytic processing and solubilization of at least some secreted endoglucanases. We also propose that the solubilization component of this process functions not just to provide the enzymes with access to wall matrix substrates but also may provide a mechanism for the eventual termination of their biological function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available