4.4 Article

Photosystem II electron transfer cycle and chlororespiration in planktonic diatoms

Journal

PHOTOSYNTHESIS RESEARCH
Volume 74, Issue 1, Pages 51-59

Publisher

KLUWER ACADEMIC PUBL
DOI: 10.1023/A:1020890625141

Keywords

diatoms; electron transport cycle; oxygen evolution; Phaeodactylum tricornutum; photoprotection; Photosystem II

Categories

Ask authors/readers for more resources

The dominance of diatoms in turbulent waters suggests special adaptations to the wide fluctuations in light intensity that phytoplankton must cope with in such an environment. Our recent demonstration of the unusually effective photoprotection by the xanthophyll cycle in diatoms [Lavaud et al. (2002) Plant Physiol 129 (3) (in press)] also revealed that failure of this protection led to inactivation of oxygen evolution, but not to the expected photoinhibition. Photo-oxidative damage might be prevented by an electron transfer cycle around PhotosystemII (PS II). The induction of such a cycle at high light intensity was verified by measurements of the flash number dependence of oxygen production in a series of single-turnover flashes. After a few minutes of saturating illumination, the oxygen flash yields are temporarily decreased. The deficit in oxygen production amounts to at most 3 electrons per PS II, but continues to reappear with a half time of 2 min in the dark until the total pool of reducing equivalents accumulated during the illumination has been consumed by (chloro) respiration. This is attributed to an electron transfer pathway from the plastoquinone pool or the acceptor side of PS II to the donor side of PS II that is insignificant at limiting light intensity but is accelerated to milliseconds at excess light intensity. Partial filling of the 3-equivalents capacity of the cyclic electron transfer path in PS II may prevent both acceptor-side photoinhibition in oxygen-evolving PS II and donor-side photoinhibition when the oxygen-evolving complex is temporarily inactivated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available