4.5 Article

Coupled, forced response of an axially moving strip with internal resonance

Journal

INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS
Volume 37, Issue 1, Pages 101-116

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0020-7462(00)00100-1

Keywords

axially moving; coupled; nonlinear; internal resonance

Categories

Ask authors/readers for more resources

In this paper, the forced response of a non-linear axially moving strip with coupled transverse and longitudinal motions is studied. In particular, the response of the system is examined in the neighborhood of a 3 : 1 internal resonance between the first two transverse modes. The equations of motion are derived using the Hamilton's Principle and discretized by the Galerkin's method. First, with the longitudinal motion neglected, the forced transverse response is investigated by applying the method of multiple scales to assess the effects of speed and the internal resonance. In general, the speed is shown to affect each mode differently. The internal resonance results in the constant solutions having transition to instability of both a saddle-node type and a Hopf bifurcation. In the region where the Hopf bifurcation occurs, steady-state periodic motion does not exist. Instead the stable motion is amplitude- and phase-modulated. When the coupled system with longitudinal motion is examined with internal resonance, results reveal that the modulated motions disappear. Thus, the presence of the longitudinal motion has a stabilizing effect on the transverse modes in the Hopf bifurcation region. The second longitudinal mode is shown to drift due primarily to a direct excitation of the first transverse mode. Effects of the longitudinal motion on the transverse response are shown to be significant for speeds both away from and close to the critical speed. (C) 2001 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available