4.2 Article

Toxoplasma gondii partially inhibits nitric oxide production of activated murine macrophages

Journal

EXPERIMENTAL PARASITOLOGY
Volume 100, Issue 1, Pages 62-70

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1006/expr.2001.4675

Keywords

Toxoplasma gondii; Trypanosoma cruzi; macrophages; monocytes; deactivation

Categories

Ask authors/readers for more resources

Activated macrophages produce nitric oxide (NO) and as such are able to control the multiplication of Toxoplasma gondii. Until now. no reports have described a possible modulation of NO production of macrophages after T. gondii infection. To investigate this possibility, murine blood monocyte-derived and peritoneal macrophages were activated in vitro with interferon-gamma and lipopolysaccharide and infected with T. gondii and Trypanosoma cruzi. and NO production was evaluated. NO was produced by monocyte-derived macrophages only if cultured in the presence of macrophage-colony-stimulating factor. Monocyte-derived or peritoneal macrophages infected with T. gondii presented a significant reduction in NO production. NO production inhibition was not detected after T. cruzi infection. Macrophages infected with higher T gondii/macrophage ratios presented lower NO production. Furthermore, only viable T. gondii could cause partial inhibition of NO production. In macrophages activated 24 h before the interaction, partial inhibition was detected after 3 h of infection and continued for 48 h. In macrophages activated immediately after the interaction. partial inhibition was not detected at 12 h. but was observed at 24 h. T. gondii-infected macrophages present lower inducible nitric oxide synthase expression as assayed by immunofluorescence. T. gondii did not develop in monocyte-derived macrophages producing NO, but were not totally eliminated. These results demonstrate that T. gondii infection partially inhibits NO production by murine macrophages, suggesting that a deactivating macrophage mechanism may be used for better survival into phagocytic cells. (C) 2001 Elsevier Science (USA).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available