4.4 Article

Study of the chlorosomal antenna of the green mesophilic filamentous bacterium Oscillochloris trichoides

Journal

PHOTOSYNTHESIS RESEARCH
Volume 74, Issue 1, Pages 73-85

Publisher

SPRINGER
DOI: 10.1023/A:1020805525800

Keywords

bacteriochlorophyll c; chlorosome; filamentous green bacteria; fluorescence emission; Oscillochloridaceae

Categories

Ask authors/readers for more resources

Whole cells, chlorosome-membrane complexes and isolated chlorosomes of the green mesophilic filamentous bacterium Oscillochloris trichoides, representing a new family of the green bacteria Oscillochloridaceae, were studied by optical spectroscopy and electron microscopy. It was shown that the main light-harvesting pigment in the chlorosome is BChl c. The presence of BChl a in chlorosomes was visualized only by pigment extraction and fluorescence spectroscopy at 77 K. The molar ratio BChl c: BChl a in chlorosomes was found to vary from 70: 1 to 110: 1 depending on light intensity used for cell growth. Micrographs of negatively and positively stained chlorosomes as well as of ultrathin sections of the cells were obtained and used for morphometric measurements of chlorosomes. Our results indicated that Osc. trichoides chlorosomes resemble, in part, those from Chlorobiaceae species, namely, in some spectral features of their absorption, fluorescence, CD spectra, pigment content as well as the morphometric characteristics. Additionally, it was shown that similar to Chlorobiaceae species, the light-harvesting chlorosome antenna of Osc. trichoides exhibited a highly redox-dependent BChl c fluorescence. At the same time, the membrane B805-860 BChl a antenna of Osc. trichoides is close to the membrane B808-866 BChl a antenna of Chloroflexaceae species.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available