4.7 Article

Work of adhesion of interfaces between M2AlC (M = Ti, V, Cr) MAX phases and alpha-Al2O3

Journal

CERAMICS INTERNATIONAL
Volume 44, Issue 18, Pages 23172-23179

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ceramint.2018.09.127

Keywords

Work of adhesion; Cohesive energy; Interfaces; Surfaces; MAX-phases; alpha-alumina

Funding

  1. German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) [SPP 1568, SL184/1-2]

Ask authors/readers for more resources

A fast and generic scheme is proposed to calculate the work of adhesion between two different materials or the cohesive energy between two crystal planes in a material. These calculations make use of the regular solution theory. This theory is extended to describe chemical interactions between atoms at either side of an interface. The so-called regular solution parameter is estimated from thermodynamic values tabulated or solution enthalpies obtained from a macroscopic atom model (MAM). Complex surface definitions at either side of an interface, both in composition and position of atoms, can be dealt with. The proposed scheme has been used to calculate the work of adhesion between M2AlC (M = Ti, V, Cr) type MAX phases and alpha-Al2O3. Next, the cohesive energy of the MAX-phases and alumina were determined. The cohesion of the M2AlC type MAX-phase is the weakest bond present in the M2AlC- alpha-Al2O3 systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available