4.5 Article

The oxidation of organic compounds in the troposphere and their global warming potentials

Journal

CLIMATIC CHANGE
Volume 52, Issue 4, Pages 453-479

Publisher

KLUWER ACADEMIC PUBL
DOI: 10.1023/A:1014221225434

Keywords

-

Ask authors/readers for more resources

Oxidation by hydroxyl radicals is the main removal process for organic compounds in the troposphere. This oxidation acts as a source of ozone and as a removal process for hydroxyl and peroxy radicals, thereby reducing the efficiency of methane oxidation and promoting the build-up of methane. Emissions of organic compounds may therefore lead to the build-up of two important radiatively-active trace gases: methane and ozone. Emission pulses of 10 organic compounds were followed in a global 3-D Lagrangian chemistry-transport model to quantify their indirect greenhouse gas impacts through changes induced in the tropospheric distributions of methane and ozone. The main factors influencing the global warming potentials of the 10 organic compounds were found to be their spatial emission patterns, chemical reactivity and transport, molecular complexity and oxidation products formed. The indirect radiative forcing impacts of organic compounds may be large enough that ozone precursors should be considered in the basket of trace gases through which policy-makers aim to combat global climate change.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available