4.6 Review

Functional diversity of protein C-termini: more than zipcoding?

Journal

TRENDS IN CELL BIOLOGY
Volume 12, Issue 3, Pages 146-150

Publisher

ELSEVIER SCIENCE LONDON
DOI: 10.1016/S0962-8924(01)02241-3

Keywords

-

Categories

Ask authors/readers for more resources

The carboxylated (C)-terminus of proteins, which includes the single terminal alpha-carboxyl group and preceding residues, is uniquely positioned to serve as a recognition signature for a variety of cell-biological processes, including protein targeting, subcellular anchoring and the static and dynamic formation of macromolecular complexes. The terminal sequence motifs can be processed by posttranslational modifications, thereby providing a means to increase sequence diversity and to regulate interactions. Several classes of protein domains have been identified that are either designed for or are capable of interacting with protein C-termini - these include PDZ and TPR domains. The interactions between these protein domains and various terminal epitopes play an important role in specifying cell-biological functions. The combination of diversity and the plasticity of the chemistry of C-termini provides mechanisms for spatial and temporal specificity that are exploited by a variety of biological processes, ranging from specifying prokaryotic protein degradation to nucleating mammalian neuronal signaling complexes. Understanding the diverse functions of protein C-termini might also provide an important indexing criterion for functional proteomics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available