4.7 Article

Trends in biomass fractionation in wheat and barley from wild ancestors to modern cultivars

Journal

PLANT BIOLOGY
Volume 4, Issue 2, Pages 258-265

Publisher

WILEY
DOI: 10.1055/s-2002-25735

Keywords

Triticum spp.; Hordeum spp.; allocation; functional growth analysis; specific leaf area; leaf area ratio; roots

Categories

Ask authors/readers for more resources

We tested the hypothesis that cultivar selection during the process of domestication in cereal plants led to a change in dry mass allocation, e.g., less root mass and more leaf mass or more leaf area per unit leaf mass. We divided 24 varieties of diploid, tetraploid and hexaploid winter wheat and two-rowed winter barley into three categories of domestication levels (wild species, old landraces and modern cultivars) and compared the patterns of dry matter fractionation at the time of anthesis under standardized outdoor growth conditions. in both cereals, total biomass per individual increased significantly with domestication level but, to our surprise, we found no significant change in dry matter investment between domestication levels: neither the dry mass fraction of leaves increased, nor was there a trend of reduced investment in stems and roots, contrary to what we expected. Specific leaf area (SLA) and leaf area ratio (LAR) of modern wheat and barley cultivars were significantly lower compared to wild varieties. Major differences in both cereals were of a purely morphological nature, namely a decrease in the number of stems and ears from wild species to domesticated varieties, along with more synchronous tiller development and therefore similar tiller size. Fertilizer increased total biomass in all domestication levels in both cereals, but influenced the dry matter fractionation only in barley. Tissue nitrogen concentration was unresponsive to both domestication and fertilization. The expected shift in functional traits, conventionally considered to determine plant growth, was not found. indeed, dry matter fractionation among the major plant biomass components seems to be very conservative.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available