4.4 Article

Transient glacier response with a higher-order numerical ice-flow model

Journal

JOURNAL OF GLACIOLOGY
Volume 48, Issue 162, Pages 467-477

Publisher

INT GLACIOL SOC
DOI: 10.3189/172756502781831278

Keywords

-

Ask authors/readers for more resources

In this paper, a higher-order numerical flowline model is presented which is numerically stable and fast and can cope with very small horizontal grid sizes (<10 m). The model is compared with the results from Blatter and others (1998) on Haut Glacier d'Arolla, Switzerland, and with the European Ice-Sheet Modelling Initiative benchmarks (Huybrechts and others, 1996). Results demonstrate that the significant difference between calculated basal-drag and driving-stress profiles in a fixed geometry disappears when the glacier profile is allowed to react to the surface mass-balance conditions and reaches a steady state. Dynamic experiments show that the mass transfer in higher-order models occurs at a different speed in the accumulation and ablation areas and that the front position is more sensitive to migration compared to the shallow-ice approximation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available