4.7 Article

Tribological behaviour of powder metallurgy-processed aluminium hybrid composites with the addition of graphite solid lubricant

Journal

CERAMICS INTERNATIONAL
Volume 39, Issue 2, Pages 1169-1182

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ceramint.2012.07.041

Keywords

Composite; Friction; Wear resistance; SiC

Ask authors/readers for more resources

The tribological behaviour of powder metallurgy-processed Al 2024-5 wt% SiC-x wt% graphite (x=0, 5, and 10) hybrid composites was investigated using a pin-on-disc equipment. An orthogonal array, the signal-to-noise ratio and analysis of variance were employed to study the optimal testing parameters using Taguchi desigh of experiments. The analysis showed that the wear loss increased with increasing sliding distance and load but was reduced with increased graphite content. The coefficient of friction increased with increasing applied load and sliding speed. The composites with 5 wt% graphite had the lowest wear loss and coefficients of friction because of the self-lubricating effect of graphite. Conversely, due to the effect of the softness of graphite, there was an increase in wear loss and the coefficient of friction in composites with 10 wt% graphite content. The morphology of the worn-out surfaces and wear debris was examined to understand the wear mechanisms. The wear mechanism is dictated by the formation of both a delamination layer and mechanically mixed layer (MML). The overall results indicated that aluminium ceramic composites can be considered as an outstanding material where high strength and wear-resistant components are of major importance, particularly in the aerospace and automotive engineering sectors. (C) 2012 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available