4.0 Article

Nicotinamide modulates mitochondrial membrane potential and cysteine protease activity during cerebral vascular endothelial cell injury

Journal

JOURNAL OF VASCULAR RESEARCH
Volume 39, Issue 2, Pages 131-147

Publisher

KARGER
DOI: 10.1159/000057762

Keywords

apoptosis; cerebrovascular endothelial cells; cytochrome c; DNA fragmentation; mitogen-activated protein kinase; nitric oxide; phosphatidylserine

Ask authors/readers for more resources

Microvascular endothelial cell (EC) apoptosis or programmed cell death (PCD) during free radical injury may be involved in the development of cerebral ischemic and degenerative diseases. Yet, the cellular mechanisms that mediate cerebral EC injury require further definition. We therefore used the agent nicotinamide as an investigative tool in EC cultures to examine the role of free radical nitric oxide (NO)-induced PCD. EC injury was evaluated by the trypan blue dye exclusion method, DNA fragmentation, membrane phosphatidylserine (PS) exposure, cysteine protease activity, mitochondrial membrane potential, and mitogen-activated protein kinase phosphorylation. We demonstrate that cerebrovascular PCD consists of two distinct pathways that involve the degradation of genomic DNA and the exposure of membrane PS residues. Each of these pathways is reversible in nature and is controlled independently by caspase 8, caspase 1, and caspase 3. As a cytoprotectant, nicotinamide is novel in the vascular system and functions at two levels. Nicotinamide not only maintains the mitochondrial membrane potential and the prevention of cytochrome c release, but also prevents the induction of caspase-8-, caspase-1- and caspase-3-like activities linked to the DNA repair enzyme poly(ADP-ribose) polymerase through mechanisms that are independent from the MAP kinase systems of p38 and JNK. The work begins to identify therapeutic strategies for the protection of the cerebral vasculature during both acute and chronic degenerative disorders. Copyright (C) 2002 S. Karger AG, Basel.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available