4.1 Article Proceedings Paper

Effects of fire on ectomycorrhizal fungi in fennoscandian boreal forests

Journal

SILVA FENNICA
Volume 36, Issue 1, Pages 69-80

Publisher

FINNISH SOC FOREST SCIENCE-NATURAL RESOURCES INST FINLAND
DOI: 10.14214/sf.551

Keywords

ectomycorrhizal fungi; fire; boreal forests; community; population

Categories

Ask authors/readers for more resources

Fire, the primary natural disturbance factor in Fennoscandian boreal forests, is considered to have exerted major selection pressure on most boreal forest organisms. However, recent studies show that few ectomycorrhizal (EM) fungi appear to have evolved post-fire adaptations, no succession of EM fungi following fire is apparent after low intensity fires, and only two EM fungal taxa exclusively fruit at post-fire conditions. In this paper I review the present knowledge of effects of forest fire on EM fungal communities in Fennscandian boreal forests, put into perspective by a comparison from other parts of the world. Characteristically, these boreal forests consist of less than a handful of tree species, e.g. Scots pine and Norway spruce, while the below ground communities of EM fungi is impressively species rich with presently more than 700 known taxa. Commonly, forest fires in Fennoscandia have been of low intensity, with a considerable portion of the trees surviving and the organic humus layer partly escaping combustion. Hence, EM fungi appear to largely have evolved under conditions characterised by a more or less continuous presence of their hosts. In fact, the composition of EM fungi within a forest appear be more variable due to spatial variation than due to wildfire. However, in areas with high intensity bums and high tree mortality, most EM fungi may locally be killed. Thus, the legacy of EM fungi following wildfire depends on the survival of trees, which determine the potential for mycorrhizal growth, and the combustion and heating of the organic soil, which directly correlate to mortality of mycorrhizas. The questions if and to what degree fires may be of significance for yet unidentified spatiotemporal dynamics of EM fungal populations and communities are discussed. Recent experiments indicate a few EM fungi are favoured by high intensity burn conditions whereas others disappear. The consequences of wildfires in temperate conifer forests differ considerably from those in boreal forests. Wildfires in temperate conifer forests are typically high intensity stand-replacing fires that cause a total combustion of organic layers. Subsequently, pre-fire EM fungal communities are largely eradicated and a succession of post-fire EM fungi is initiated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available