4.5 Article

Local and global instability of fluid-conveying pipes on elastic foundations

Journal

JOURNAL OF FLUIDS AND STRUCTURES
Volume 16, Issue 1, Pages 1-14

Publisher

ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD
DOI: 10.1006/jfls.2001.0405

Keywords

-

Ask authors/readers for more resources

We investigate the relationship between the local and global bending motions of fluid-conveying pipes on an elastic foundation. The local approach refers to an infinite pipe without taking into account its finite ends, while in the global approach we consider a pipe of finite length with a given set of boundary conditions. Several kinds of propagating disturbances are identified from the dispersion relation, namely evanescent, neutral and unstable waves. As the length of the pipe is increased, the global criterion for instability is found to coincide with local neutrality, whereby a local harmonic forcing only generates neutral waves. For sets of boundary conditions that give rise only to static instabilities, the criterion for global instability of the long pipe is that static neutral waves exist. Conversely, for sets of boundary conditions that allow dynamic instabilities, the criterion for global instability of the long pipe corresponds to that for the existence of neutral waves of finite nonzero frequency. These results are discussed in relation with the work of Kulikovskii and other similar approaches in hydrodynamic stability theory. (C) 2002 Academic Press.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available