4.7 Article

GreenPro-I: a risk-based life cycle assessment and decision-making methodology for process plant design

Journal

ENVIRONMENTAL MODELLING & SOFTWARE
Volume 17, Issue 8, Pages 669-692

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/S1364-8152(02)00028-2

Keywords

LCA; pollution prevention; cleaner production; risk-based design; MCDM

Ask authors/readers for more resources

In recent years, significant attention and emphasis has been given to cleaner and,greener technologies in processes and product manufacturing. This is recognized as a key element in pollution prevention (P2) and development of sustainable strategies. Life cycle assessment (LCA) is a systematic approach that enables implementation of cleaner and greener product and process concepts in industry. In recent times substantial progress has been made in the use of LCA for product evaluation and selection. However, its use in cleaner and greener process design and decision-making has not been explored to a great extent. Process design and decision-making are challenging activities that involve trade-off of conflicting objectives, namely costs, technical feasibility and environmental impacts. These conflicting objectives can be analysed at the early design and decision-making stage by considering the full life cycle of a process or a product. A cleaner and greener process is the one that is cost optimal, technically feasible, and environmentally benign. To obtain these results LCA requires various tools and techniques in a systematic methodology. This paper proposes a holistic and integrated methodology GreenPro-I for process/product design by combining the traditional LCA approach with multi-criteria decision-making methods. This methodology is simple and applicable at the early design stage and is more robust against uncertainty in the data. Application of the methodology has been demonstrated in the paper through a urea production case study. (C) 2002 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available