4.7 Article

Experimental and theoretical dielectric studies of PVDF/PZT nanocomposite thin films

Journal

CERAMICS INTERNATIONAL
Volume 37, Issue 5, Pages 1653-1660

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ceramint.2011.01.037

Keywords

Nanocomposites; Dielectric properties; PZT; PVDF

Funding

  1. University Malaya [PS331/2009C]
  2. High Impact Research grant [UM.C/625/1/HIR/041]

Ask authors/readers for more resources

Poly(vinylidene fluoride)/lead zirconate titanate nanocomposite thin films (PVDF/PZT-NPs) were successfully prepared by mixing fine Pb(Zr(0.52),Ti(0.48))O(3) nanoparticles (PZT-NPs) into a PVDF solution under ultrasonication. The mixture was spin coated onto glass substrate and then cured at 110 degrees C. X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) were used to characterize the structure and properties of the obtained thin-film nanocomposites. The dielectric properties of the PVDF/PZT-NPs were analyzed in detail with respect to frequency. In comparison with pure poly (vinylidene fluoride), the dielectric constant of the nanocomposite (15 vol.% PZT-NPs) was significantly increased, whereas the loss tangent was unchanged in the frequency range of 100 Hz to 30 MHz. The nanocomposites exhibited good dielectric stability over a wide frequency range. Different theoretical approaches were employed to predict the effective dielectric constants of the thin film nanocomposite systems, and the estimated results were compared with the experimental data. (C) 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available