4.5 Article

Approaches to quantifying forest structures

Journal

FORESTRY
Volume 75, Issue 3, Pages 305-324

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/forestry/75.3.305

Keywords

-

Categories

Ask authors/readers for more resources

For some time, structure indices - quantifying spatial stand structure - have been integrated into forest research and are used to provide a measure of biodiversity. In addition, correlation functions - developed initially for problems outside forestry - enable analysis and characterization of forest stand structures, generating more accessible information. This paper outlines a classification of structural indices measuring alpha diversity and examines typical representatives of the classification groups such as the Shannon index, the aggregation index of Clark and Evans, the contagion index, the coefficient of segregation of Pielou, the mingling index, the diameter differentiation index, the pair correlation and the mark correlation function. These can be used to measure differences between forests in time and space, to generate forest structures, to analyse the differences between observed and expected structures and to characterize modifications of forest structure resulting from selective harvesting. These algorithms are the keys for assessing complex forest structures, which can be the result of continuous cover forestry methods. Continuous cover forests with selective harvesting are being promoted in the new forest policies of Britain. Case studies have shown that from given spatial forest structures one can possibly conclude the suitability for habitats, a hypothesis which has yet to be proved by further appropriate analysis. The equations for the quantification of stand structure presented in this paper have the advantage that they are easier to survey during forest inventory than the more direct measures of ecological variety.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available