4.7 Article

Pure and (zinc or iron) doped titania powders prepared by sol-gel and used as photocatalyst

Journal

CERAMICS INTERNATIONAL
Volume 37, Issue 8, Pages 3317-3322

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ceramint.2011.04.127

Keywords

Sol-gel; Nanocrystalline titania; Metal-ion doping; Orange II decolouration; Visible light photocatalysis

Ask authors/readers for more resources

Pure and doped (zinc and iron) nanocrystalline titania powders were prepared by the sol gel route. Doping tends to change the existing crystalline phases and their degree of crystallinity, but particle size distribution and morphology of the particles are also affected. In the pure titania system, the main crystalline phase is anatase but rutile is also present. The doped (Zn and Fe) titania crystallizes only as anatase. The undoped titania shows a bimodal distribution of particles size: fine (20-40 nm) and coarse (300-500 nm) grains. The doped TiO(2) powder also exhibits a much more uniform particle size distribution, with all grains under 40 nm. The photocatalytic efficiency of suspended powders was tested on the decolouration of Orange II aqueous solutions under visible artificial light irradiation. The maximum decolouration reached by the pure TiO(2) was 81% at a rate of 3.6 x 10(-3) min(-1). Iron doping decreases the photocatalytic activity; the maximum dye degradation was only 43% at a rate of 1.3 x 10(-3) min(-1). On the contrary, the performance of Zn-doped titania was better, having a decolouration rate of 17.7 x 10(-3) min(-1). (C) 2011 Published by Elsevier Ltd and Techna Group S.r.l.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available