3.9 Article

Increasing flow length in thin wall injection molding using a rapidly heated mold

Journal

POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING
Volume 41, Issue 5, Pages 819-832

Publisher

MARCEL DEKKER INC
DOI: 10.1081/PPT-120014390

Keywords

flow length; injection molding; mold heating; rapid thermal response; thin wall molding

Ask authors/readers for more resources

Injection molded parts are driven down in size and weight especially for portable electronic applications. While gains are achieved via cost reduction and increased portability, thinner parts encounter more difficulty in molding due to the frozen layer problem. To increase moldability in thin wall molding, a rapid thermal response (RTR) mold was investigated. The RTR mold is capable of rapidly raising the surface temperature to the polymer melt temperature prior to the injection stage and then rapidly cooling to the ejection temperature. The resulting filling process is done inside a hot mold cavity and formation of frozen layer is prohibited. Concepts of scalable filling and low-speed filling are discussed in the article to address the benefit of this molding method. Simulation results showed that significant reduction in injection pressure and speed can be achieved in RTR molding. In contrast to the filling behavior in conventional molding, the injection pressure in RTR molding decreases as the injection speed decreases, and therefore, extremely thin parts can be molded at lower injection speeds. Filling lengths of both RTR and conventionally molded polycarbonate samples, with two levels of thickness, under two levels of injection speed were experimentally studied. The experimental results demonstrated the advantage of the new molding method.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available