4.6 Article

Molecular regulation of urothelial renewal and host defenses during infection with uropathogenic Escherichia coli

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 277, Issue 9, Pages 7412-7419

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M110560200

Keywords

-

Funding

  1. NIDDK NIH HHS [DK 59129] Funding Source: Medline
  2. NATIONAL INSTITUTE OF DIABETES AND DIGESTIVE AND KIDNEY DISEASES [R01DK059129] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Uropathogenic Escherichia coli (UPEC), the principal cause of urinary tract infection in women, attaches to the superficial facet cell layer of the bladder epithelium (urothelium) via its FimH adhesin. Attachment triggers exfoliation of bacteria-laden superficial facet cells, followed by rapid reconstitution of the urothelium through differentiation of underlying basal and intermediate cells. We have used DNA microarrays to define the molecular regulators of urothelial renewal and host defense expressed in adult C57B1/6 female mice during the early phases of infection with isogenic virulent (FimH+) or avirulent (FimH-) UPEC strains. The temporal evolution and cellular origins of selected responses were then characterized by real time quantitative reverse transcriptase-PCR, in situ hybridization, and immunohistochemical analyses. Well before exfoliation is evident, FimH-mediated attachment suppresses transforming growth factor-beta (Bmp4) and Wnt5a/Ca2+ signaling to promote subsequent differentiation of basal/intermediate cells. The early transcriptional responses to attachment also include induction of regulators of proliferation (e.g. epidermal growth factor family members), induction of the ETS transcription factor Elf3, which transactivates genes involved in epithelial differentiation and host defense (inducible nitric-oxide synthase), induction of modulators, and mediators of pro-inflammatory responses (e.g. Socs3, Cebp/delta, Bc13, and CC/CXC chemokines), induction of modulators of apoptotic responses (A20), and induction of intermediate cell tight junction components (claudin-4). Both early and late phases of the host response exhibit remarkable specificity for the FimH+ strain and provide new insights about the molecular cascade mobilized to combat UPEC-associated urinary tract infection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available