4.5 Article

Imaging the electrostatic potential of transmembrane channels: Atomic probe microscopy of OmpF porin

Journal

BIOPHYSICAL JOURNAL
Volume 82, Issue 3, Pages 1667-1676

Publisher

BIOPHYSICAL SOCIETY
DOI: 10.1016/S0006-3495(02)75517-3

Keywords

-

Categories

Ask authors/readers for more resources

The atomic force microscope (AFM) was used to image native OmpF porin and to detect the electrostatic potential generated by the protein. To this end the OmpF porin trimers from Escherichia coli was reproducibly imaged at a lateral resolution of similar to0.5 nm and a vertical resolution of similar to0.1 nm at variable electrolyte concentrations of the buffer solution. At low electrolyte concentrations the charged AFM probe not only contoured structural details of the membrane protein surface but also interacted with local electrostatic potentials. Differences measured between topographs recorded at variable ionic strength allowed mapping of the electrostatic potential of OmpF porin. The potential map acquired by AFM showed qualitative agreement with continuum electrostatic calculations based on the atomic OmpF porin embedded in a lipid bilayer at the same electrolyte concentrations. Numerical simulations of the experimental conditions showed the measurements to be reproduced quantitatively when the AFM probe was included in the calculations. This method opens a novel avenue to determine the electrostatic potential of native protein surfaces at a lateral resolution better than 1 nm and a vertical resolution of similar to0.1 nm.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available