4.7 Article

Pressure-induced actin polymerization in vascular smooth muscle as a mechanism underlying myogenic behavior

Journal

FASEB JOURNAL
Volume 16, Issue 1, Pages 72-76

Publisher

FEDERATION AMER SOC EXP BIOL
DOI: 10.1096/cj.01-0104hyp

Keywords

myogenic reactivity; mechanotransduction; cytoskeletal rearrangement

Funding

  1. PHS HHS [R0I 59406] Funding Source: Medline

Ask authors/readers for more resources

We hypothesize that actin polymerization within vascular smooth muscle (VSM) in response to increased intravascular pressure is a novel and previously unrecognized mechanism underlying arterial myogenic behavior. This hypothesis is based on the following observations. 1) Unlike skeletal or cardiac muscle, VSM contains a substantial pool of unpolymerized globular (G) actin whose function is not known. 2) The cytosolic concentration of G-actin is significantly reduced by an elevation in intravascular pressure, demonstrating the dynamic nature of actin within VSM and implying a shift in the F: G equilibrium in favor of F-actin. 3) Agents that inhibit actin polymerization and stabilize the cytoskeleton (cytochalasins and latrunculin) inhibit the development of myogenic tone and decrease the effectiveness of myogenic reactivity. 4) Depolymerization of F-actin with cytochalasin D causes VSM relaxation and increased G-actin content, whereas polymerization of F-actin with jasplakinolide causes VSM contraction and decreased G-actin content. These results are consistent with observations in other cell types in which actin dynamics have been implicated in contractility and/or motility. Actin filament formation in VSM may therefore underlie mechanotransduction and, by providing additional sites for interaction with myosin, enhance force production in response to pressure. Although the mechanism by which actin polymerization is stimulated by pressure is not known, it likely occurs via integrin-mediated activation of signal transduction pathways previously associated with VSM contraction (e. g., PKC activation, Rho A, and tyrosine phosphorylation).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available