4.6 Article

On the absence of wind bow-shocks around OB-runaway stars: Probing the physical conditions of the interstellar medium

Journal

ASTRONOMY & ASTROPHYSICS
Volume 383, Issue 3, Pages 999-1010

Publisher

E D P SCIENCES
DOI: 10.1051/0004-6361:20011793

Keywords

stars : early-type; stars : kinematics; stars : mass loss; ISM : bubbles; ISM : structure; X-rays : binaries

Ask authors/readers for more resources

High-resolution IRAS maps are used to search for the presence of stellar-wind bow-shocks around high-mass X-ray binaries (HMXBs). Their high space velocities, recently confirmed with Hipparcos observations, combined with their strong stellar winds should result in the formation of wind bow-shocks. Except for the already known bow-shock around Vela X-1 (Kaper et al. 1997), we do not find convincing evidence for a bow-shock around any of the other HMXBs. Also in the case of (supposedly single) OB-runaway stars, only a minority appears to be associated with a bow-shock (Van Buren et al. 1995). We investigate why wind bow-shocks are not detected for the majority of these OB-runaway systems: is this due to the IRAS sensitivity, the system's space velocity, the stellar-wind properties, or the height above the galactic plane? It turns out that none of these suggested causes can explain the low detection rate (similar to40%). We propose that the conditions of the interstellar medium mainly determine whether a wind bow-shock is formed or not. In hot, tenuous media (like inside galactic superbubbles) the sound speed is high (similar to100 km s(-1)), such that many runaways move at subsonic velocity through a low-density medium, thus preventing the formation of an observable bow-shock. Superbubbles are expected (and observed) around OB associations, where the OB-runaway stars were once born. Turning the argument around, we use the absence (or presence) of wind bow-shocks around OB runaways to probe the physical conditions of the interstellar medium in the solar neighbourhood.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available