4.6 Article

Emission profile variability in hot star winds - A pseudo-3D method based on radiation hydrodynamics simulations

Journal

ASTRONOMY & ASTROPHYSICS
Volume 383, Issue 3, Pages 1113-1124

Publisher

EDP SCIENCES S A
DOI: 10.1051/0004-6361:20011826

Keywords

line : formation; radiative transfer; stars : atmospheres; stars : early type; stars : mass loss

Ask authors/readers for more resources

We present theoretical calculations of emission line profile variability based on hot star wind structure calculated numerically using radiation hydrodynamics simulations. A principal goal is to examine how well short-time-scale variations observed in wind emission lines can be modelled by wind structure arising from small-scale instabilities intrinsic to the line-driving of these winds. The simulations here use a new implementation of the Smooth Source Function formalism for line-driving within a one-dimensional (1D) operation of the standard hydrodynamics code ZEUS-2D. As in previous wind instability simulations, the restriction to 1D is necessitated by the computational costs of non-local integrations needed for the line-driving force; but we find that naive application of such simulations within an explicit assumption of spherically symmetric structure leads to an unobserved strong concentration of profile variability toward the line wings. We thus introduce a new patch method for mimicking a full 3D wind structure by collecting random sequences of 1D simulations to represent the structure evolution along radial rays that extend over a selectable patch-size of solid angle. We provide illustrative results for a selection of patch sizes applied to a simulation with standard assumptions that govern the details of instability-generated wind structure, and show in particular that a typical model with a patch size of about 3 deg can qualitatively reproduce the fundamental properties of observed profile variations. We conclude with a discussion of prospects for extending the simulation method to optically thick winds of Wolf-Rayet (WR) stars, and for thereby applying our patch method to dynamical modelling of the extensive variability observed in wind emission lines from these WR stars.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available